2022年2月28日星期一

Induction Brazing & Soldering Principle

Induction Brazing & Soldering Principle Brazing and soldering are processes of joining similar or dissimilar materials using a compatible a filler material. Filler metals include lead, tin, copper, silver, nickel and their alloys. Only the alloy melts and solidifies during these processes to join the work piece base materials. The filler metal is pulled into the joint by capillary action. Soldering processes are conducted below 840°F (450°C) while brazing applications are conducted at temperatures above 840°F (450°C) up to 2100°F (1150°C). The success of these processes depends upon the assembly's design, clearance between the surfaces to be joined, cleanliness, process control and the correct selection of equipment needed to perform a repeatable process. Cleanliness is ordinarily obtained by introducing a flux which covers and dissolves dirt or oxides displacing them from the braze joint. Many operations are now conducted in a controlled atmosphere with a blanket of inert gas or combination of inert / active gasses to shield the operation and eliminate the need for a flux. These methods have been proven on a wide variety of material and part configurations replacing or complimenting atmosphere furnace technology with a just in time - single piece flow process. Brazing Filler Materials Brazing filler metals can come in a variety of forms, shapes, sizes and alloys depending on their intended use. Ribbon, preformed rings, paste, wire and preformed washers are just a few of the shapes and forms alloys that can be found. The decision to use a particular alloy and/or shape is largely dependent on the parent materials to be joined, placement during processing and the service environment for which the final product is intended.

Induction Annealing Copper Tubes

Objective Uniformly high frequency annealing copper tubes simultaneously to 800°F (426°C) in under 10 seconds with induction heating.
Equipment DW-HF-45kw induction heater Helical coil Material • Two copper tubes – OD: 0.69’’ (1.75 cm) – ID: 0.55’’ (1.40 cm) – Length: 5.50’’ (14.0 cm). Key Parameters Power: 27kW Temperature: 842°F (450°C) Time: 5 sec
Process:
  1. The two copper tubes were placed together in the coil.
  2. Induction heating was applied for 5s.
Results/Benefits:
  • Improved process control for uniform induction heating to a desired temperature
  • Power on demand and rapid, consistent heat cycles
  • Technology without pollution, which is both clean and safe

Induction Heating Barrel for Plastic Extruder and Injection Molding Machine

Induction heating barrel offers greater energy savings, reliability, and faster response.

Spectacular energy savings, superior reliability and much faster response than conventional heater bands are some of the advantages offered by a newly developed induction heating system. The heating system uses electromagnetic induction - an old and well-known principle used to heat large industrial furnaces, special machines for injection moulding molten metal, thermoset molds, and some Japanese hot-runner nozzles. However, it is a relatively new concept for heating barrels of plastics extrusion and injection molding machines. The electromagnetic induction heating system, introduced by HLQ induction equipment Co from China turns the steel barrel itself into a resistance heater by generating electrical eddy currents in the metal near the outer surface of the barrel tube. Those eddy currents are induced by electrical current passing through a cable wrapped in a continuous coil around the barrel but not touching it. Although the initial cost is more than heater bands, induction heating reportedly pays for itself in several ways, and also at a faster pace, depending on machine size. Laboratory measurements indicate that the heating efficiency (relative to energy consumed) of typical mica band heaters at 200-300 degree C processing range (common in injection moulding) is likely to be only 40-60%, while that of a ceramic band heater may be 10-15% higher. The remaining energy is wasted by radiation and convection to the surrounding environment. What's more, a new mica band loses about 10% of its initial efficiency after the first 6 hours of use because it darkens, raising its surface emissivity and consequent radiation losses. At higher barrel temperatures for engineering resins, efficiency drops even more. In contrast, HLQ measures induction heating efficiency at about 95%. Radiation losses are minimized by the insulating sleeves, which rise to a temperature of around 60-70 degree C during operation. The low-resistance induction coils remain cool enough to touch.

Where can induction heating barrel?

It is mainly applied to injection, extrusion; blow filming, wire drawing, granulating and recycling machines, etc. The product application includes film, sheet, profile, raw material etc. It can be used for heating the barrel, flange, die head, screw and other parts of the machines. It is excellent in energy-saving and cooling down work environment. Induction heating is the process of heating an electrically conducting object (usually a metal) by electromagnetic induction, where eddy currents are generated within the metal and resistance leads to Joule heating of the metal. The induction coil itself does not get heated. The heat generating object is the heated object itself.

Why and how induction heating barrel can save energy?

Presently,most of the plastic machines are using the conventional resistance heating method, where the resistance wire is heated up and then transfer the heat to the barrel via heater cover.So only the heat close to the barrel surface can be transferred to the barrel and the heat close to outside heater cover is lost to the air which causes a rise in environment temperature. Induction heater is technology where high frequency magnetic fields which cause he be heated up bu electro-magnetic field(EMF)that are brushing against each other.When the barrel is heated up and heat is minimum,there is very high heat efficiency and minimum heat loss to the environment where energy saving could reach30-80%.Due to the fact that the induction coil is not producing any high heat and also there is no resistance wire that gets oxidized and causes the heater to burn out, the induction heater has a longer service life and also less maintenance.

What are the advantages of induction heating barrel?

  • Energy efficiency 30%-85% Currently, plastic processing machinery mainly uses resistance heating elements which can produce a large amount of heat radiated to the surroundings. Induction heating is an ideal alternative to solve this issue. The surface temperature of induction heating coil ranges between 50ºC and 90ºC, the heat losses are significantly minimized, providing energy savings of 30%-85%. The energy saving effect is therefore more obvious when the induction heating system is used in high power heating equipment.
  • Safety Using induction heating system enables the surface of the machine to be safe for touching, and that means it can avoid burn injuries which often occur in plastic machines that use resistance heating elements, providing a safe workplace for operators.
  • Fast heating, high heating efficiency Compared to resistance heating whose energy conversion efficiency is approximately at 60%, the induction heating is over 98% efficient at converting electricity to heat.
  • Lower workplace temperature, higher operation comfort After using induction heating system, the temperature of entire production workshop is lowered by more than 5 degrees.
  • Long service life In contrast to resistance heating elements that have to long-lasting work at high temperature, the induction heating works at near ambient temperature, therefore efficiently prolonging the service life.
  • Accurate temperature control, high product qualification rate The induction heating provides low or no thermal inertia, so that it will not cause the temperature overshoot. And the temperature can remain at set value of 0.5 degree difference.

What is the superiority of induction heating barrel for plastic extrusion compared with traditional heaters?

Induction heater Traditional heaters
Heating method Induction heating is the process of heating an electrically conducting object (usually a metal) by electromagnetic induction, where eddy currents are generated within the metal and resistance leads to Joule heating of the metal. The induction coil itself does not get heated. The heat generating object is the heated object itself Resistance wires get heated directly and heat is transferred by contact.
 heating up time Quicker heating-up, higher efficiency slower heating-up, lower efficiency
 Energy saving rate

 Save 30-80% energy rate,reduce working temperature

Cannot save energy
 Installation  Easy to install Easy to install
 Operation  Easy to operate Easy to operate
 Maintenance

Control box is easy to replace  without turning off your machine

Easy to replace but have to turning off your machine

Temperature  Control Small thermal inertia and precise temperature control because the heater doesn’t get heated byitself. Big thermal inertia, low accuracy in temperature control
 Product Quality  Higher product quality because of precise temperature control Lower product quality
 Safety

 Outer sheath is safe to touch, lower surface temperature, no electric leakage.

 Temperature on outer sheath is much higher, easy to get burned. Electric leakage under wrong operation.
Service life of heater 2-4years 1-2 years
Service life of Barrel and Screw

Longer usage life for barrel, screw etc. due to lower frequency of changing heaters.

Shorter usage life for barrel, screw etc.

 Environment Lower environment temperature; No noise Much higher environment temperature and much noise

Induction Heating Power Calculation

In the case of knowing the heating power of existing heating system, selecting an appropriate power according to load rate

  • Load rate ≤ 60%, applicable power is 80% of the original power;
  • Load rate between 60%-80%, select the original power;
  • Load rate > 80%, applicable power is 120% of the original power;

When the heating power of existing heating system is unknown

  • For injection molding machine, blown film machine and extrusion machine, the power should be calculated as 3W per cm2 according to the actual surface area of the cylinder (barrel);
  • For dry cut pelletizing machine, the power should be calculated as 4W per cm2 according to the actual surface area of the cylinder (barrel);
  • For wet cut pelletizing machine, the power should be calculated as 8W per cm2 according to the actual surface area of the cylinder (barrel);
For example: cylinder diameter 160mm, length 1000mm (i.e. 160mm=16cm, 1000mm=100cm) Cylinder surface area calculation: 16*3.14*100=5024cm² Calculating as 3W per cm2: 5024*3=15072W, i.e. 15kW

Induction Soldering Process Video

Induction Soldering Process Video With Induction Heater

Induction Heating Barrel for Plastic Extruder and Injection Molding Machine

Induction heating barrel offers greater energy savings, reliability, and faster response.

Spectacular energy savings, superior reliability and much faster response than conventional heater bands are some of the advantages offered by a newly developed induction heating system. The heating system uses electromagnetic induction - an old and well-known principle used to heat large industrial furnaces, special machines for injection moulding molten metal, thermoset molds, and some Japanese hot-runner nozzles. However, it is a relatively new concept for heating barrels of plastics extrusion and injection molding machines. The electromagnetic induction heating system, introduced by HLQ induction equipment Co from China turns the steel barrel itself into a resistance heater by generating electrical eddy currents in the metal near the outer surface of the barrel tube. Those eddy currents are induced by electrical current passing through a cable wrapped in a continuous coil around the barrel but not touching it. Although the initial cost is more than heater bands, induction heating reportedly pays for itself in several ways, and also at a faster pace, depending on machine size. Laboratory measurements indicate that the heating efficiency (relative to energy consumed) of typical mica band heaters at 200-300 degree C processing range (common in injection moulding) is likely to be only 40-60%, while that of a ceramic band heater may be 10-15% higher. The remaining energy is wasted by radiation and convection to the surrounding environment. What's more, a new mica band loses about 10% of its initial efficiency after the first 6 hours of use because it darkens, raising its surface emissivity and consequent radiation losses. At higher barrel temperatures for engineering resins, efficiency drops even more. In contrast, HLQ measures induction heating efficiency at about 95%. Radiation losses are minimized by the insulating sleeves, which rise to a temperature of around 60-70 degree C during operation. The low-resistance induction coils remain cool enough to touch.

Where can induction heating barrel?

It is mainly applied to injection, extrusion; blow filming, wire drawing, granulating and recycling machines, etc. The product application includes film, sheet, profile, raw material etc. It can be used for heating the barrel, flange, die head, screw and other parts of the machines. It is excellent in energy-saving and cooling down work environment. Induction heating is the process of heating an electrically conducting object (usually a metal) by electromagnetic induction, where eddy currents are generated within the metal and resistance leads to Joule heating of the metal. The induction coil itself does not get heated. The heat generating object is the heated object itself.

Why and how induction heating barrel can save energy?

Presently,most of the plastic machines are using the conventional resistance heating method, where the resistance wire is heated up and then transfer the heat to the barrel via heater cover.So only the heat close to the barrel surface can be transferred to the barrel and the heat close to outside heater cover is lost to the air which causes a rise in environment temperature. Induction heater is technology where high frequency magnetic fields which cause he be heated up bu electro-magnetic field(EMF)that are brushing against each other.When the barrel is heated up and heat is minimum,there is very high heat efficiency and minimum heat loss to the environment where energy saving could reach30-80%.Due to the fact that the induction coil is not producing any high heat and also there is no resistance wire that gets oxidized and causes the heater to burn out, the induction heater has a longer service life and also less maintenance.

What are the advantages of induction heating barrel?

  • Energy efficiency 30%-85% Currently, plastic processing machinery mainly uses resistance heating elements which can produce a large amount of heat radiated to the surroundings. Induction heating is an ideal alternative to solve this issue. The surface temperature of induction heating coil ranges between 50ºC and 90ºC, the heat losses are significantly minimized, providing energy savings of 30%-85%. The energy saving effect is therefore more obvious when the induction heating system is used in high power heating equipment.
  • Safety Using induction heating system enables the surface of the machine to be safe for touching, and that means it can avoid burn injuries which often occur in plastic machines that use resistance heating elements, providing a safe workplace for operators.
  • Fast heating, high heating efficiency Compared to resistance heating whose energy conversion efficiency is approximately at 60%, the induction heating is over 98% efficient at converting electricity to heat.
  • Lower workplace temperature, higher operation comfort After using induction heating system, the temperature of entire production workshop is lowered by more than 5 degrees.
  • Long service life In contrast to resistance heating elements that have to long-lasting work at high temperature, the induction heating works at near ambient temperature, therefore efficiently prolonging the service life.
  • Accurate temperature control, high product qualification rate The induction heating provides low or no thermal inertia, so that it will not cause the temperature overshoot. And the temperature can remain at set value of 0.5 degree difference.

What is the superiority of induction heating barrel for plastic extrusion compared with traditional heaters?

Induction heater Traditional heaters
Heating method Induction heating is the process of heating an electrically conducting object (usually a metal) by electromagnetic induction, where eddy currents are generated within the metal and resistance leads to Joule heating of the metal. The induction coil itself does not get heated. The heat generating object is the heated object itself Resistance wires get heated directly and heat is transferred by contact.
 heating up time Quicker heating-up, higher efficiency slower heating-up, lower efficiency
 Energy saving rate

 Save 30-80% energy rate,reduce working temperature

Cannot save energy
 Installation  Easy to install Easy to install
 Operation  Easy to operate Easy to operate
 Maintenance

Control box is easy to replace  without turning off your machine

Easy to replace but have to turning off your machine

Temperature  Control Small thermal inertia and precise temperature control because the heater doesn’t get heated byitself. Big thermal inertia, low accuracy in temperature control
 Product Quality  Higher product quality because of precise temperature control Lower product quality
 Safety

 Outer sheath is safe to touch, lower surface temperature, no electric leakage.

 Temperature on outer sheath is much higher, easy to get burned. Electric leakage under wrong operation.
Service life of heater 2-4years 1-2 years
Service life of Barrel and Screw

Longer usage life for barrel, screw etc. due to lower frequency of changing heaters.

Shorter usage life for barrel, screw etc.

 Environment Lower environment temperature; No noise Much higher environment temperature and much noise

Induction Heating Power Calculation

In the case of knowing the heating power of existing heating system, selecting an appropriate power according to load rate

  • Load rate ≤ 60%, applicable power is 80% of the original power;
  • Load rate between 60%-80%, select the original power;
  • Load rate > 80%, applicable power is 120% of the original power;

When the heating power of existing heating system is unknown

  • For injection molding machine, blown film machine and extrusion machine, the power should be calculated as 3W per cm2 according to the actual surface area of the cylinder (barrel);
  • For dry cut pelletizing machine, the power should be calculated as 4W per cm2 according to the actual surface area of the cylinder (barrel);
  • For wet cut pelletizing machine, the power should be calculated as 8W per cm2 according to the actual surface area of the cylinder (barrel);
For example: cylinder diameter 160mm, length 1000mm (i.e. 160mm=16cm, 1000mm=100cm) Cylinder surface area calculation: 16*3.14*100=5024cm² Calculating as 3W per cm2: 5024*3=15072W, i.e. 15kW

https://dw-inductionheater.com/induction-heating-barrel-for-plastic-extruder-and-injection-molding-machine?feed_id=98237&_unique_id=621cbd8bd661e

2022年2月27日星期日

Induction Brazing Aluminum Pipes

Induction Brazing Aluminum Pipes Objective: Brazing two aluminum pipes simultaneously to an aluminum evaporator core Material 2 aluminum pipes 0.72" (18.3mm) diameter, evaporator core 9.88" x 10.48" x 1.5" thick (251mm x 266.3mm x 38mm), braze rings Temperature 610 ºF (321 ºC) Frequency 250 kHz Equipment • DW-UHF-20KW induction heating system, equipped with a remote workhead containing two 1.5μF capacitors for a total of 0.75μF • An induction heating coil designed and developed specifically for this application. Process A four turn helical pancake coil is used to heat the 2 pipes simultaneously. Three braze rings are placed on each joint and power is applied for 90-100 seconds to create a leak proof joint on both pipes. Narrative • Customer is requiring a 40 seconds heat time for both brazes. In order to meet this requirement 3 units will be utilized to braze 2 joints each for a total of 6 joints in 90-100 seconds. The customer is currently using a flame process which can burn away the thin flange at the joint area and create scrap parts. By switching to induction for this application the customer is decreasing their scrap parts and also increasing their quality and production rate. Results/Benefits Induction heating provides: • Repeatable leak free joints • Increased part quality, less scrap • Hands-free heating that involves no operator skill for manufacturing • Even distribution of heating

How to design induction heating coil

How to design induction heating coil

How to design induction heating coilIt is within the induction heating coil/inductor that the varying magnetic field required for induction heating is developed, through the flow of alternating current. Induction heating coil/Inductor design is therefore one of the most important aspects of the overall induction heating machine. A well-designed inductor provides the proper heating pattern for your part and maximizes the efficiency of the induction heating power supply, while still allowing easy insertion and removal of the part. The induction coil/inductor does not have to be shaped in a helix. With the right design, it is possible to heat conductive materials of any size and form, and also possible to heat only the portion of material required. It is even possible to heat different zones of the part at the same or different temperatures by means of a proper design of the inductor geometry. Temperature uniformity within your part is achieved through correct inductor design. The most effective uniformity can be achieved in round parts. Due to the nature of electrical current path flow, parts with sharp edges could preferentially heat in those areas if the proper inductor design is not used.

Coupling Efficiency

There is a proportional relationship between the amount of current flow and distance between the inductor and part. Placing the part close to the inductor increases the flow of current and the amount of heat induced in the part. This relationship is referred to as the coupling efficiency of the inductor.

Basic Construction

Induction heating coil/Inductors are often made of copper tubing - a very good conductor of heat and electricity - with a diameter of 1/8" to 3/16"; larger copper coil assemblies are made for applications such as strip metal heating and pipe heating. Inductors are usually cooled by circulating water, and are most often custom-made to fit the shape and size of the part to be heated. So inductors can have single or multiple turns; have a helical, round or square shape; or be designed as internal (part inside inductor) or external (part adjacent to inductor).

How Induction Heating Coils Work

How efficiently and effectively a workpiece is heated is determined by the induction coil. Induction coils are water-cooled copper conductors created from copper tubing which is readily formed into the shape of the coil for the induction heating process. As water flows through them, induction heating coils themselves do not get hot. Work coils range in complexity from a coil that is precision machined from solid copper and brazed, to a simple solenoid- or helical-wound coil (made up of a number of turns of copper tube wound around a mandrel). By producing an alternating electromagnetic field due to the alternating current flowing in them, coils transfer energy from the power supply to the workpiece. The coil’s alternating electromagnetic field (EMF) creates an induced current (eddy current) in the workpiece, which generates heats due to I Squared R losses (core losses). The coil’s EMF strength correlates with the current in the workpiece. This transfer of energy is known as the eddy current effect or transformer effect.

Induction coil design

induction heating plastic granulator

Brief Introduction of induction heating plastic granulator/plastic extrusion:

Induction heating plastic granulator/plastic extrusion is a one type of energy-saving heater. It has many advantages including significant energy-saving, fast heating up, high energy efficiency, low or zero maintenance etc. It can also lower environment temperature by generating much less heat. While installing the induction heater system, there will not involve any major changes to the electrical control system.

Where can induction heating plastic granulator/plastic extrusion?

It is mainly applied to injection, extrusion; blow filming, wire drawing, granulating and recycling machines, etc. The product application includes film, sheet, profile, raw material etc. It can be used for heating the barrel, flange, die head, screw and other parts of the machines. It is excellent in energy-saving and cooling down work environment. Induction heating is the process of heating an electrically conducting object (usually a metal) by electromagnetic induction, where eddy currents are generated within the metal and resistance leads to Joule heating of the metal. The induction coil itself does not get heated. The heat generating object is the heated object itself.

Why and how induction heating plastic granulator/plastic extrusion can save energy?

Presently,most of the plastic machines are using the conventional resistance heating method, where the resistance wire is heated up and then transfer the heat to the barrel via heater cover.So only the heat close to the barrel surface can be transferred to the barrel and the heat close to outside heater cover is lost to the air which causes a rise in environment temperature. Induction heater is technology where high frequency magnetic fields which cause he be heated up bu electro-magnetic field(EMF)that are brushing against each other.When the barrel is heated up and heat is minimum,there is very high heat efficiency and minimum heat loss to the environment where energy saving could reach30-80%.Due to the fact that the induction coil is not producing any high heat and also there is no resistance wire that gets oxidized and causes the heater to burn out, the induction heater has a longer service life and also less maintenance.

What are the advantages of induction heating plastic granulator/plastic extrusion?

  • Energy efficiency 30%-85% Currently, plastic processing machinery mainly uses resistance heating elements which can produce a large amount of heat radiated to the surroundings. Induction heating is an ideal alternative to solve this issue. The surface temperature of induction heating coil ranges between 50ºC and 90ºC, the heat losses are significantly minimized, providing energy savings of 30%-85%. The energy saving effect is therefore more obvious when the induction heating system is used in high power heating equipment.
  • Safety Using induction heating system enables the surface of the machine to be safe for touching, and that means it can avoid burn injuries which often occur in plastic machines that use resistance heating elements, providing a safe workplace for operators.
  • Fast heating, high heating efficiency Compared to resistance heating whose energy conversion efficiency is approximately at 60%, the induction heating is over 98% efficient at converting electricity to heat.
  • Lower workplace temperature, higher operation comfort After using induction heating system, the temperature of entire production workshop is lowered by more than 5 degrees.
  • Long service life In contrast to resistance heating elements that have to long-lasting work at high temperature, the induction heating works at near ambient temperature, therefore efficiently prolonging the service life.
  • Accurate temperature control, high product qualification rate The induction heating provides low or no thermal inertia, so that it will not cause the temperature overshoot. And the temperature can remain at set value of 0.5 degree difference.

What is the superiority of induction heating plastic granulator/plastic extrusion compared with traditional heaters?

Induction heater Traditional heaters
Heating method Induction heating is the process of heating an electrically conducting object (usually a metal) by electromagnetic induction, where eddy currents are generated within the metal and resistance leads to Joule heating of the metal. The induction coil itself does not get heated. The heat generating object is the heated object itself Resistance wires get heated directly and heat is transferred by contact.
 heating up time Quicker heating-up, higher efficiency slower heating-up, lower efficiency
 Energy saving rate

 Save 30-80% energy rate,reduce working temperature

Cannot save energy
 Installation  Easy to install Easy to install
 Operation  Easy to operate Easy to operate
 Maintenance

Control box is easy to replace  without turning off your machine

Easy to replace but have to turning off your machine

Temperature  Control Small thermal inertia and precise temperature control because the heater doesn’t get heated byitself. Big thermal inertia, low accuracy in temperature control
 Product Quality  Higher product quality because of precise temperature control Lower product quality
 Safety

 Outer sheath is safe to touch, lower surface temperature, no electric leakage.

 Temperature on outer sheath is much higher, easy to get burned. Electric leakage under wrong operation.
Service life of heater 2-4years 1-2 years
Service life of Barrel and Screw

Longer usage life for barrel, screw etc. due to lower frequency of changing heaters.

Shorter usage life for barrel, screw etc.

 Environment Lower environment temperature; No noise Much higher environment temperature and much noise

Induction Heating Power Calculation

In the case of knowing the heating power of existing heating system, selecting an appropriate power according to load rate

  • Load rate ≤ 60%, applicable power is 80% of the original power;
  • Load rate between 60%-80%, select the original power;
  • Load rate > 80%, applicable power is 120% of the original power;

When the heating power of existing heating system is unknown

  • For injection molding machine, blown film machine and extrusion machine, the power should be calculated as 3W per cm2 according to the actual surface area of the cylinder (barrel);
  • For dry cut pelletizing machine, the power should be calculated as 4W per cm2 according to the actual surface area of the cylinder (barrel);
  • For wet cut pelletizing machine, the power should be calculated as 8W per cm2 according to the actual surface area of the cylinder (barrel);
For example: cylinder diameter 160mm, length 1000mm (i.e. 160mm=16cm, 1000mm=100cm) Cylinder surface area calculation: 16*3.14*100=5024cm² Calculating as 3W per cm2: 5024*3=15072W, i.e. 15kW

Induction heating bearings machine PDF

The development of possibilities of machines depends on the production of bearings that can work at high rotating speeds. A modern type of bearing that is used in mechanical industry is an induction heating bearing. This bearing has several advantages. Induction heating bearings do not need a lubricating substance. There is no mechan- ical contact between working parts of the bearing. It works silently with little friction. The lifetime of this bearing is much longer than that of a conventional one. Analytical methods for the analysis of thermoelec- tric problems in induction bearings are not convenient. For the model presented, we use the finite element method to carry out calculations. The heating of in- duction bearings should be carefully examined, when the gap between the working parts is small because temperature increases can cause the bearing to seize up...... induction heating bearings  

induction heating plastic granulator

Brief Introduction of induction heating plastic granulator/plastic extrusion:

Induction heating plastic granulator/plastic extrusion is a one type of energy-saving heater. It has many advantages including significant energy-saving, fast heating up, high energy efficiency, low or zero maintenance etc. It can also lower environment temperature by generating much less heat. While installing the induction heater system, there will not involve any major changes to the electrical control system.

Where can induction heating plastic granulator/plastic extrusion?

It is mainly applied to injection, extrusion; blow filming, wire drawing, granulating and recycling machines, etc. The product application includes film, sheet, profile, raw material etc. It can be used for heating the barrel, flange, die head, screw and other parts of the machines. It is excellent in energy-saving and cooling down work environment. Induction heating is the process of heating an electrically conducting object (usually a metal) by electromagnetic induction, where eddy currents are generated within the metal and resistance leads to Joule heating of the metal. The induction coil itself does not get heated. The heat generating object is the heated object itself.

Why and how induction heating plastic granulator/plastic extrusion can save energy?

Presently,most of the plastic machines are using the conventional resistance heating method, where the resistance wire is heated up and then transfer the heat to the barrel via heater cover.So only the heat close to the barrel surface can be transferred to the barrel and the heat close to outside heater cover is lost to the air which causes a rise in environment temperature. Induction heater is technology where high frequency magnetic fields which cause he be heated up bu electro-magnetic field(EMF)that are brushing against each other.When the barrel is heated up and heat is minimum,there is very high heat efficiency and minimum heat loss to the environment where energy saving could reach30-80%.Due to the fact that the induction coil is not producing any high heat and also there is no resistance wire that gets oxidized and causes the heater to burn out, the induction heater has a longer service life and also less maintenance.

What are the advantages of induction heating plastic granulator/plastic extrusion?

  • Energy efficiency 30%-85% Currently, plastic processing machinery mainly uses resistance heating elements which can produce a large amount of heat radiated to the surroundings. Induction heating is an ideal alternative to solve this issue. The surface temperature of induction heating coil ranges between 50ºC and 90ºC, the heat losses are significantly minimized, providing energy savings of 30%-85%. The energy saving effect is therefore more obvious when the induction heating system is used in high power heating equipment.
  • Safety Using induction heating system enables the surface of the machine to be safe for touching, and that means it can avoid burn injuries which often occur in plastic machines that use resistance heating elements, providing a safe workplace for operators.
  • Fast heating, high heating efficiency Compared to resistance heating whose energy conversion efficiency is approximately at 60%, the induction heating is over 98% efficient at converting electricity to heat.
  • Lower workplace temperature, higher operation comfort After using induction heating system, the temperature of entire production workshop is lowered by more than 5 degrees.
  • Long service life In contrast to resistance heating elements that have to long-lasting work at high temperature, the induction heating works at near ambient temperature, therefore efficiently prolonging the service life.
  • Accurate temperature control, high product qualification rate The induction heating provides low or no thermal inertia, so that it will not cause the temperature overshoot. And the temperature can remain at set value of 0.5 degree difference.

What is the superiority of induction heating plastic granulator/plastic extrusion compared with traditional heaters?

Induction heater Traditional heaters
Heating method Induction heating is the process of heating an electrically conducting object (usually a metal) by electromagnetic induction, where eddy currents are generated within the metal and resistance leads to Joule heating of the metal. The induction coil itself does not get heated. The heat generating object is the heated object itself Resistance wires get heated directly and heat is transferred by contact.
 heating up time Quicker heating-up, higher efficiency slower heating-up, lower efficiency
 Energy saving rate

 Save 30-80% energy rate,reduce working temperature

Cannot save energy
 Installation  Easy to install Easy to install
 Operation  Easy to operate Easy to operate
 Maintenance

Control box is easy to replace  without turning off your machine

Easy to replace but have to turning off your machine

Temperature  Control Small thermal inertia and precise temperature control because the heater doesn’t get heated byitself. Big thermal inertia, low accuracy in temperature control
 Product Quality  Higher product quality because of precise temperature control Lower product quality
 Safety

 Outer sheath is safe to touch, lower surface temperature, no electric leakage.

 Temperature on outer sheath is much higher, easy to get burned. Electric leakage under wrong operation.
Service life of heater 2-4years 1-2 years
Service life of Barrel and Screw

Longer usage life for barrel, screw etc. due to lower frequency of changing heaters.

Shorter usage life for barrel, screw etc.

 Environment Lower environment temperature; No noise Much higher environment temperature and much noise

Induction Heating Power Calculation

In the case of knowing the heating power of existing heating system, selecting an appropriate power according to load rate

  • Load rate ≤ 60%, applicable power is 80% of the original power;
  • Load rate between 60%-80%, select the original power;
  • Load rate > 80%, applicable power is 120% of the original power;

When the heating power of existing heating system is unknown

  • For injection molding machine, blown film machine and extrusion machine, the power should be calculated as 3W per cm2 according to the actual surface area of the cylinder (barrel);
  • For dry cut pelletizing machine, the power should be calculated as 4W per cm2 according to the actual surface area of the cylinder (barrel);
  • For wet cut pelletizing machine, the power should be calculated as 8W per cm2 according to the actual surface area of the cylinder (barrel);
For example: cylinder diameter 160mm, length 1000mm (i.e. 160mm=16cm, 1000mm=100cm) Cylinder surface area calculation: 16*3.14*100=5024cm² Calculating as 3W per cm2: 5024*3=15072W, i.e. 15kW

https://dw-inductionheater.com/induction-heating-plastic-granulator?feed_id=97803&_unique_id=621b6831b7df4

induction heating plastic granulator

Brief Introduction of induction heating plastic granulator/plastic extrusion:

Induction heating plastic granulator/plastic extrusion is a one type of energy-saving heater. It has many advantages including significant energy-saving, fast heating up, high energy efficiency, low or zero maintenance etc. It can also lower environment temperature by generating much less heat. While installing the induction heater system, there will not involve any major changes to the electrical control system.

Where can induction heating plastic granulator/plastic extrusion?

It is mainly applied to injection, extrusion; blow filming, wire drawing, granulating and recycling machines, etc. The product application includes film, sheet, profile, raw material etc. It can be used for heating the barrel, flange, die head, screw and other parts of the machines. It is excellent in energy-saving and cooling down work environment. Induction heating is the process of heating an electrically conducting object (usually a metal) by electromagnetic induction, where eddy currents are generated within the metal and resistance leads to Joule heating of the metal. The induction coil itself does not get heated. The heat generating object is the heated object itself.

Why and how induction heating plastic granulator/plastic extrusion can save energy?

Presently,most of the plastic machines are using the conventional resistance heating method, where the resistance wire is heated up and then transfer the heat to the barrel via heater cover.So only the heat close to the barrel surface can be transferred to the barrel and the heat close to outside heater cover is lost to the air which causes a rise in environment temperature. Induction heater is technology where high frequency magnetic fields which cause he be heated up bu electro-magnetic field(EMF)that are brushing against each other.When the barrel is heated up and heat is minimum,there is very high heat efficiency and minimum heat loss to the environment where energy saving could reach30-80%.Due to the fact that the induction coil is not producing any high heat and also there is no resistance wire that gets oxidized and causes the heater to burn out, the induction heater has a longer service life and also less maintenance.

What are the advantages of induction heating plastic granulator/plastic extrusion?

  • Energy efficiency 30%-85% Currently, plastic processing machinery mainly uses resistance heating elements which can produce a large amount of heat radiated to the surroundings. Induction heating is an ideal alternative to solve this issue. The surface temperature of induction heating coil ranges between 50ºC and 90ºC, the heat losses are significantly minimized, providing energy savings of 30%-85%. The energy saving effect is therefore more obvious when the induction heating system is used in high power heating equipment.
  • Safety Using induction heating system enables the surface of the machine to be safe for touching, and that means it can avoid burn injuries which often occur in plastic machines that use resistance heating elements, providing a safe workplace for operators.
  • Fast heating, high heating efficiency Compared to resistance heating whose energy conversion efficiency is approximately at 60%, the induction heating is over 98% efficient at converting electricity to heat.
  • Lower workplace temperature, higher operation comfort After using induction heating system, the temperature of entire production workshop is lowered by more than 5 degrees.
  • Long service life In contrast to resistance heating elements that have to long-lasting work at high temperature, the induction heating works at near ambient temperature, therefore efficiently prolonging the service life.
  • Accurate temperature control, high product qualification rate The induction heating provides low or no thermal inertia, so that it will not cause the temperature overshoot. And the temperature can remain at set value of 0.5 degree difference.

What is the superiority of induction heating plastic granulator/plastic extrusion compared with traditional heaters?

Induction heater Traditional heaters
Heating method Induction heating is the process of heating an electrically conducting object (usually a metal) by electromagnetic induction, where eddy currents are generated within the metal and resistance leads to Joule heating of the metal. The induction coil itself does not get heated. The heat generating object is the heated object itself Resistance wires get heated directly and heat is transferred by contact.
 heating up time Quicker heating-up, higher efficiency slower heating-up, lower efficiency
 Energy saving rate

 Save 30-80% energy rate,reduce working temperature

Cannot save energy
 Installation  Easy to install Easy to install
 Operation  Easy to operate Easy to operate
 Maintenance

Control box is easy to replace  without turning off your machine

Easy to replace but have to turning off your machine

Temperature  Control Small thermal inertia and precise temperature control because the heater doesn’t get heated byitself. Big thermal inertia, low accuracy in temperature control
 Product Quality  Higher product quality because of precise temperature control Lower product quality
 Safety

 Outer sheath is safe to touch, lower surface temperature, no electric leakage.

 Temperature on outer sheath is much higher, easy to get burned. Electric leakage under wrong operation.
Service life of heater 2-4years 1-2 years
Service life of Barrel and Screw

Longer usage life for barrel, screw etc. due to lower frequency of changing heaters.

Shorter usage life for barrel, screw etc.

 Environment Lower environment temperature; No noise Much higher environment temperature and much noise

Induction Heating Power Calculation

In the case of knowing the heating power of existing heating system, selecting an appropriate power according to load rate

  • Load rate ≤ 60%, applicable power is 80% of the original power;
  • Load rate between 60%-80%, select the original power;
  • Load rate > 80%, applicable power is 120% of the original power;

When the heating power of existing heating system is unknown

  • For injection molding machine, blown film machine and extrusion machine, the power should be calculated as 3W per cm2 according to the actual surface area of the cylinder (barrel);
  • For dry cut pelletizing machine, the power should be calculated as 4W per cm2 according to the actual surface area of the cylinder (barrel);
  • For wet cut pelletizing machine, the power should be calculated as 8W per cm2 according to the actual surface area of the cylinder (barrel);
For example: cylinder diameter 160mm, length 1000mm (i.e. 160mm=16cm, 1000mm=100cm) Cylinder surface area calculation: 16*3.14*100=5024cm² Calculating as 3W per cm2: 5024*3=15072W, i.e. 15kW

https://dw-inductionheater.com/induction-heating-plastic-granulator?feed_id=97803&_unique_id=621b683189f6a

2022年2月26日星期六

induction brazing carbide tip onto steel head teeth

high frequency induction brazing carbide tip onto steel head teeth process

Objective In this application test, induction brazing carbide tip onto steel working head teeth.
Induction Brazing Equipment DW-UHF-10kw induction brazing machine Customized induction heating coil Materials • Steel working head teeth • Brazing paste Key Parameters Power: 4.5 kW Time: 6 seconds
Induction Brazing Process:
  1. Brazing paste is put on the tool
  2. The steel working head teeth are attached.
  3. The assembly is positioned in the three-turn coil.
  4. The assembly is heated.
  5. The joint is completed in 6 seconds.
Results/Benefits:
  • Strong durable joints
  • Selective and precise heat zone, resulting in less part distortion and joint stress than welding
  • Less oxidation
  • Faster heating cycles
  • More consistent results and suitability for large volume production
  • Safer than flame brazing
Induction Brazing Carbide Tipping is a specific brazing process by which a hardened tip material is applied to a base material to produce an extremely hard cutting edge. When using induction heating, the tipping material is brazed to the base material with temperatures up to 1900F.

关注者

博客归档

我的简介

我的照片
HLQ induction heating machine manufacturer provides the service of induction brazing,melting,hot forming,hardening surface,annealing,shrink fitting,PWHT,etc.